Page 418 - GreenChemistry2023 Emhetgel
P. 418

[20]   Y .  Xue, S. Li, Z. Ge, F .  Li, and Z. Liu, ‘Application of mathematical model for the process of coal
                      tar  pitch  modified  petroleum  asphalt’,  Energy  Sources,  Part  A:  Recovery,  Utilization  and
                      Environmental   Effects,   vol.   41,   no.   14,   pp.   1752–1761,   Jul.   2019,   doi:
                      10.1080/15567036.2018.1549152.
               [21]   L. Du et al., Preparation of Paving Asphalt by Co-pyrolysis of Coal Tar Pitch and FCC Slurry.
               [22]   Z. Liu, ‘Fabrication of A New Asphalt Binder for Road Applications’, in IOP Conference Series:
                      Earth  and  Environmental  Science,  IOP  Publishing  Ltd,  Mar.  2021.  doi:  10.1088/1755-
                      1315/701/1/012031.
               [23]   G.  Zhang,  Y .   Sun,  and  Y.  Xu,  ‘Review  of  briquette  binders  and  briquetting  mechanism’,
                      Renewable  and  Sustainable  Energy  Reviews,  vol.  82,  pp.  477–487,  Feb.  2018,  doi:
                      10.1016/J.RSER.2017.09.072.
               [24]   A. M. Hung and E. H. Fini, ‘Absorption spectroscopy to determine the extent and mechanisms
                      of  aging  in  bitumen  and  asphaltenes’,  Fuel,  vol.  242,  pp.  408–415,  Apr.  2019,  doi:
                      10.1016/J.FUEL.2019.01.085.
               [25]   Y .  Xue, Z. Ge, F .  Li, S. Su, and B. Li, ‘Modified asphalt properties by blending petroleum asphalt
                      and coal tar pitch’, Fuel, vol. 207, pp. 64–70, Nov. 2017, doi: 10.1016/J.FUEL.2017.06.064.
               [26]   J.  Zhu,  B.  Birgisson,  and  N.  Kringos,  ‘Polymer  modification  of  bitumen:  Advances  and
                      challenges’,   Eur   Polym   J,   vol.   54,   no.   1,   pp.   18–38,   May   2014,   doi:
                      10.1016/J.EURPOLYMJ.2014.02.005.
               [27]   M.  Wu,  J.  Yang,  and  Y.  Zhang,  ‘Comparison  study  of  modified  asphalt  by  different  coal
                      liquefaction residues and different preparation methods’, Fuel, vol. 100, pp. 66–72, Oct. 2012,
                      doi: 10.1016/J.FUEL.2011.12.042.
               [28]   T .  Kan, X. Sun, H. Wang, C. Li, and U. Muhammad, ‘Production of gasoline and diesel from coal
                      tar via its catalytic hydrogenation in serial fixed beds’, in Energy and Fuels, Jun. 2012, pp. 3604–
                      3611. doi: 10.1021/ef3004398.
               [29]   C. Yang et al., ‘Investigation of physicochemical and rheological properties of SARA components
                      separated  from  bitumen’,  Constr  Build  Mater,  vol.  235,  p.  117437,  Feb.  2020,  doi:
                      10.1016/J.CONBUILDMAT.2019.117437.
               [30]   J. Jiang, Q. Wang, Y. Wang, W. Tong, B. Xiao, and B. Xiao, ‘<b>GC/MS ANALYSIS OF
                      COAL TAR COMPOSITION PRODUCED FROM COAL PYROLYSIS</b>’;, Bull Chem Soc
                      Ethiop, vol. 21, no. 2, Jul. 2007, doi: 10.4314/bcse.v21i2.21202.
               [31]   M. Sun et al., ‘Separation and Composition Analysis of GC/MS Analyzable and Unanalyzable
                      Parts  from  Coal  Tar’,  Energy  and  Fuels,  vol.  32,  no.  7,  pp.  7404–7411,  Jul.  2018,  doi:
                      10.1021/acs.energyfuels.8b01054.
               [32]   Q. Shi et al., ‘Identification of dihydroxy aromatic compounds in a low-temperature pyrolysis coal
                      tar by gas chromatography-mass spectrometry (GC-MS) and Fourier transform ion cyclotron
                      resonance mass spectrometry (FT-ICR MS)’, Energy and Fuels, vol. 24, no. 10, pp. 5533–5538,
                      Oct. 2010, doi: 10.1021/ef1007352.
               [33]   T.  Jiao,  M.  Gong,  X.  Zhuang,  C.  Li,  and  S.  Zhang,  ‘A  new  separation  method  for  phenolic
                      compounds from low-temperature coal tar with urea by complex formation’, Journal of Industrial
                      and Engineering Chemistry, vol. 29, pp. 344–348, Sep. 2015, doi: 10.1016/J.JIEC.2015.04.013.
               [34]   T. Jiao, C. Li, X. Zhuang, S. Cao, H. Chen, and S. Zhang, ‘The new  liquid–liquid extraction
                      method for separation of phenolic compounds from coal tar’, Chemical Engineering Journal, vol.
                      266, pp. 148–155, Apr. 2015, doi: 10.1016/J.CEJ.2014.12.071.
               [35]   S. Ma, C. Ma, K. Qian, Y .  Zhou, and Q. Shi, ‘Characterization of phenolic compounds in coal tar
                      by  gas  chromatography/negative-ion  atmospheric  pressure  chemical  ionization  mass
                      spectrometry’, Rapid Communications in Mass Spectrometry, pp. 1806–1810, Aug. 2016, doi:
                      10.1002/rcm.7608.
               [36]   L. Zhang, D. Xu, J. Gao, S. Zhou, L. Zhao, and Z. Zhang, ‘Extraction and mechanism for the
                      separation of neutral N-compounds from coal tar by ionic liquids’, Fuel, vol. 194, pp. 27–35, Apr.
                      2017, doi: 10.1016/J.FUEL.2016.12.095.
               [37]   W. Cui et al., ‘Product compositions from catalytic hydroprocessing of low temperature coal tar
                      distillate over three commercial catalysts’, Reac Kinet Mech Cat, vol. 119, pp. 491–509, 2016,
                      doi: 10.1007/s11144-016-1068.
               [38]   A. S. Maloletnev, A. M. Gyul’Maliev, and O. A. Mazneva, ‘Chemical composition of the distillate
                      fractions of coal tar from OAO Altai-Koks’, Solid Fuel Chemistry, vol. 48, no. 1, pp. 11–21, Jan.
                      2014, doi: 10.3103/S0361521914010066.
               [39]   Z. Bai, P .  Huang, L. Y .  Wang, H. W. Cao, X. W. Zhang, and G. Z. Li, ‘A study on upgrading light
                      coal tar to aerospace fuel’, Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology,
                      vol. 49, no. 5, pp. 694–702, May 2021, doi: 10.1016/S1872-5813(21)60062-2.
   413   414   415   416   417   418   419   420   421   422   423