Page 353 - GreenChemistry2023 Emhetgel
P. 353
(14) Yu, K.; Lu, F.; Li, Q.; Chen, H.; Lu, B.; Liu, J.; Li, Z.; Dai, F.; Wu, D.; Lan, G. In Situ Assembly of Ag
Nanoparticles (AgNPs) on Porous Silkworm Cocoon-Based Wound Film: Enhanced Antimicrobial and Wound
Healing Activity. Scientific Reports 2018 7:1 2017, 7 (1), 1–13. https://doi.org/10.1038/s41598-017-02270-6.
(15) Ahire, J. J.; Hattingh, M.; Neveling, D. P.; Dicks, L. M. T. Copper-Containing Anti-Biofilm Nanofiber Scaffolds
as a Wound Dressing Material. PLoS One 2016, 11 (3), e0152755.
https://doi.org/10.1371/JOURNAL.PONE.0152755.
(16) Tottoli, E. M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin Wound Healing Process and New
Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics 2020, 12 (8), 1–30.
https://doi.org/10.3390/PHARMACEUTICS12080735.
(17) Richard, J.-L. New Insights in Diabetic Foot Infection. World J Diabetes 2011, 2 (2), 24.
https://doi.org/10.4239/WJD.V2.I2.24.
(18) Gonzalez, A. C. D. O.; Andrade, Z. D. A.; Costa, T. F.; Medrado, A. R. A. P. Wound Healing - A Literature
Review. An Bras Dermatol 2016, 91 (5), 614–620. https://doi.org/10.1590/ABD1806-4841.20164741.
(19) Laurano, R.; Boffito, M.; Ciardelli, G.; Chiono, V. Wound Dressing Products: A Translational Investigation from
the Bench to the Market. Engineered Regeneration 2022, 3 (2), 182–200.
https://doi.org/10.1016/J.ENGREG.2022.04.002.
(20) Tenorová, K.; Masteiková, R.; Pavloková, S.; Kostelanská, K.; Bernatonienė, J.; Vetchý, D. Formulation and
Evaluation of Novel Film Wound Dressing Based on Collagen/Microfibrillated Carboxymethylcellulose Blend.
Pharmaceutics 2022, Vol. 14, Page 782 2022, 14 (4), 782.
https://doi.org/10.3390/PHARMACEUTICS14040782.
(21) Minsart, M.; Van Vlierberghe, S.; Dubruel, P.; Mignon, A. Commercial Wound Dressings for the Treatment of
Exuding Wounds: An in-Depth Physico-Chemical Comparative Study. Burns Trauma 2022, 10.
https://doi.org/10.1093/BURNST/TKAC024.
(22) Dong, L.; Wang, S. J.; Zhao, X. R.; Zhu, Y. F.; Yu, J. K. 3D- Printed Poly(ε-Caprolactone) Scaffold Integrated
with Cell-Laden Chitosan Hydrogels for Bone Tissue Engineering. Scientific Reports 2017 7:1 2017, 7 (1), 1–
9. https://doi.org/10.1038/s41598-017-13838-7.
(23) Rotator Cuff Healing Using a Nanofiber Scaffold in Patients Greater Than 55 Years | Clinical Research Trial
Listing ( Rotator Cuff Tears ) ( NCT04325789 ). https://www.centerwatch.com/clinical-
trials/listings/241775/rotator-cuff-healing-using-a-nanofiber-scaffold-in-patients-greater-than-55-years/
(accessed 2023-06-03).
(24) Amarjargal, A.; Tijing, L. D.; Shon, H. K.; Park, C. H.; Kim, C. S. Facile in Situ Growth of Highly Monodispersed
Ag Nanoparticles on Electrospun PU Nanofiber Membranes: Flexible and High Efficiency Substrates for
Surface Enhanced Raman Scattering. Appl Surf Sci 2014, 308, 396–401.
https://doi.org/10.1016/J.APSUSC.2014.04.188.
(25) Haider, A.; Haider, S.; Kang, I. K. A Comprehensive Review Summarizing the Effect of Electrospinning
Parameters and Potential Applications of Nanofibers in Biomedical and Biotechnology. Arabian Journal of
Chemistry 2018, 11 (8), 1165–1188. https://doi.org/10.1016/J.ARABJC.2015.11.015.
(26) Pan, F.; Amarjargal, A.; Altenried, S.; Liu, M.; Zuber, F.; Zeng, Z.; Rossi, R. M.; Maniura-Weber, K.; Ren, Q.
Bioresponsive Hybrid Nanofibers Enable Controlled Drug Delivery through Glass Transition Switching at
Physiological Temperature. ACS Appl Bio Mater 2021, 4 (5), 4271–4279.
https://doi.org/10.1021/ACSABM.1C00099/ASSET/IMAGES/LARGE/MT1C00099_0004.JPEG.
(27) Patra, D.; Riham, &; Kurdi, E.; Kurdi, R. El. Curcumin as a Novel Reducing and Stabilizing Agent for the
Green Synthesis of Metallic Nanoparticles. 2021. https://doi.org/10.1080/17518253.2021.1941306.